
LA-UR-00-6049
Approved for public release;
distribution is unlimited.

Title: CartaBlanca– A Pure-Java, Component-based Systems Simulation
Tool for Coupled Non-linear Physics on Unstructured Grids

Author(s): W. B. VanderHeyden
E. D. Dendy
N. T. Padial-Collins

Submitted to: Joint ACM Java Grande - ISCOPE 2001 Conference
Stanford, California
June 2-4, 2001

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U. S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for
U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right
to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Form 836 (8/00)

CartaBlanca– A Pure-Java, Component-based Systems
Simulation Tool for Coupled Non-linear Physics on

Unstructured Grids©

W. B. VanderHeyden
Los Alamos National Laboratory

Theoretical Division and
Los Alamos Computer Science

Institute
Los Alamos, NM 87545

wbv@lanl.gov

E. D. Dendy
Los Alamos National Laboratory

Theoretical Division and
Los Alamos Computer Science

Institute
Los Alamos, NM 87545

dendy@lanl.gov

N. T. Padial-Collins
Los Alamos National Laboratory

Theoretical Division and
Los Alamos Computer Science

Institute
Los Alamos, NM 87545
nelylanl@lanl.gov

ABSTRACT
This paper describes a component-based non-linear physical
system simulation prototyping package written entirely in Java
using object-oriented design to provide scientists and engineers a
“developer-friendly” software environment for large-scale
computational method and physical model development. The
software design centers on the Jacobian-Free Newton-Krylov
solution method surrounding a finite-volume treatment of
conservation equations. This enables a clean component-based
implementation. We first provide motivation for the development
of the software and then describe software structure. Discussion
of software structure includes a description of the use of Java’s
built-in thread facility that enables data-parallel, shared-memory
computations on a wide variety of unstructured grids with
triangular, quadrilateral, tetrahedral and hexahedral elements. We
also discuss the use of Java’s inheritance mechanism in the
construction of a hierarchy of physics-systems objects and linear
and non-linear solver objects that simplify development and foster
software re-use. As a compliment to the discussion of these
object hierarchies, we provide a brief review of the Jacobian-Free
Newton-Krylov nonlinear system solution method and discuss
how it fits into our design. Following this, we show results from
preliminary calculations and then discuss future plans including
the extension of the software to distributed memory computer
systems.

Categories and Subject Descriptors
D.1.3 [Software] Programming Techniques—Concurrent
programming; D.1.5 [Software]: Programming Techniques—
Object-Oriented Programming; D.2.6 [Software]: Software

 © 2001 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored
by a contractor or affiliate of the [U.S.] Government. As such, the
Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for
Government purposes only.
JavaGrande/ISCOPE 2001 Stanford, California USA

Engineering—Programming Environment; D.2 13 [Software]:
Software Engineering—Reusable Software

General Terms
Design, Documentation

Keywords
Java, object oriented, components, solver, Newton, Krylov,
Jacobian, threads, parallel, physics

1. INTRODUCTION
Specialized simulation software for non-linear physical systems is
one of the central research products from many of the programs
here at Los Alamos National Laboratory (LANL) as well as other
similar institutions. These systems are often 3-dimensional and
are solved on unstructured computational grids. Thus, these
software systems can be quite complex. Very often, these
projects involve the modification of existing software to produce
new capabilities. Furthermore, program goals change frequently
as funding priorities change or as research developments lead to
new branches of investigation. As such, application development
is often, by far, the bottleneck on these projects and there is,
therefore, substantial incentive for software and software
environments that are “developer-friendly”—easy for scientific
and engineering software developers to modify and extend.
Fortunately, there are two technology trends of recent years that
we believe can be used to address this need in a coordinated
fashion.

First, object-oriented and component-based software has made
an enormous impact in the commercial software arena for
telecommunications and e-Business. Enhancement of software
developer productivity has come from a variety of sources
including new languages such as Java which support object
orientation and component software and a host of software
developer productivity tools including graphical design
applications, graphical debuggers, etc., that work with these
languages. At the same time, significant advances have occurred
recently in non-linear systems solutions methods. In particular,
Jacobian-Free Newton-Krylov (JFNK), [3], methods have been
employed and extended to provide robust and flexible solution
methods for a wide variety of coupled non-linear physics

simulation capabilities. In addition, the combination of JFNK and
the finite-volume technique, [7], fits well into an object-oriented
or component-based software environment.

Thus, the goal of the CartaBlanca project is to produce a
modern flexible software environment for prototyping physical
models, discretization schemes and solution methods for non-
linear physics problems on unstructured grids. CartaBlanca
employs an object-oriented, component-based design using the
Java programming language and takes advantage of appropriate
available software engineering tools. In order to obtain a
realistically useful software tool, CartaBlanca is written so that it
can be used on a variety of unstructured grids in 2 and 3
dimensions. CartaBlanca is able to accept a variety of mesh
elements including triangles and quadrilaterals in 2D and
tetrahedral and hexahedra in 3D. CartaBlanca employs the finite-
volume discretization method, [7], to provide for wide-ranging
flexibility with regard to both meshes and physical systems.
Finally, CartaBlanca is written in a data-parallel fashion to
provide a test bed for parallel algorithm development.

1.1. Status
We currently have a great deal of infrastructure for CartaBlanca in
place. We now have a fully 3-dimensional finite-volume
simulation capability that can solve a variety of physics problems
on unstructured meshes employing shared-memory parallelism
using Java’s built-in thread facility. The following is a list of
features currently available

• Accepts unstructured grids in 2 and 3 dimensions and with

triangular, tetrahedral, quadrilateral and hexahedral elements.
• Accepts Metis, [13], generated mesh partition files;

computes in parallel on Metis sub domains using Java’s
built-in thread facility.

• Has a Graphical User Interface (GUI) based input facility.
• Abstract classes for state, physics and solvers objects impose

a uniform structure for developers, enforced by the compiler.
• Pre-conditioned Conjugate gradient and GMRES Krylov

linear solvers interact seamlessly with physics objects.
• Non-linear quasi-Newton solver is wrapped around linear

Krylov solvers to provide a JFNK solver.
• Physics objects for high accuracy scalar advection, heat

transfer and incompressible flow currently available.
• Automatic generation of Tecplot (from Amtec Engineering)

graphics files for arbitrary physical systems.
• Embedded software-testing facility based on the JUnit

framework, [12].
• Direct remote access to CVS revision control server is

enabled for efficient team code development.

1.2. Java Performance
There have been numerous studies on the use of Java for high
performance computing. The recent article by Schatzman and
Donehower, [21], provides a useful discussion of the potential
pitfalls involved and tips on how to program in Java to try to
achieve performance comparable to that obtainable using C, C++
and Fortran. Despite the fact that numerical applications in Java
are, at present, typically slower than equivalent applications
written in these languages, it is our opinion that the important
benefits from Java’s strong typing, clean design, object-
orientation and compatibility with so many useful commercial

software productivity tools make it a serious alternative language
for intensive scientific and engineering computing applications,
even today. Also, as the Java language specification and Java
interpreters and compilers improve we should see even greater
benefits. Particularly encouraging are the Java language changes
contemplated by the Java Grande Forum, [11].

1.3. Related Efforts
CartaBlanca builds on some important existing software
programs here at LANL. CFDLIB, [14], a Fortran program, is an
outgrowth of the Caveat program, [1], which provides developers
with a flexible finite-volume multiphase flow simulation
capability. The Telluride program, [23], here at LANL provides a
multi-material simulation capability with interface tracking on
unstructured grids. Telluride is written in Fortran 90 and makes
extensive use of the Fortran 90 module concept. The CHAD
program, [18], here at Los Alamos is a flexible node-based finite-
volume simulation program for flow simulation on unstructured
grids. CHAD also uses Fortran 90 and accommodates hybrid
grids using an edge-based connectivity data structure, [22].
Finally, Kokopelli, is a C++ program for interfacial and polymer
flow problems. The authors have had extensive experience with
each one of these programs. The design and implementation of
CartaBlanca builds on the lessons learned with each of these.
Another LANL software effort worth mentioning here is the
POOMA project, [17] , which used C++ and advanced object
oriented programming techniques to produce a flexible scientific
problem-solving environment. The POOMA experience, [17]
provides useful insights into the use of object orientation in
scientific computation.

It is also worthwhile to note two relevant examples from
outside our laboratory. First, Hauser, et. Al., [10], have reported
on their effort to produce an object-oriented, pure-Java simulation
code for aerospace applications. They employ a multi-block
structured grid computation scheme and use of Java’s thread and
RMI facilities for parallelization and to enable remote interaction
between a graphical user interface and the numerical application.

Another effort worth noting here is the work of Hatakeyama, et.
Al., [9], who describe an object-oriented paradigm for flow
simulation software in which the object-oriented concept is used
at the computational node level to produce flexible abstractions.
They demonstrate their concepts with a C++, structured grid
simulation of a wind tunnel with a test object and show that they
can easily insert and extract arbitrary-shaped flow obstacles.

1.4. Outline
In Section 2 we provide an overview the finite-volume method
for discretization of conservation equations. In Section 3 we
describe the major features of the Jacobian-Free Newton-Krylov
solution method. We then proceed in Section 4 to give an
overview of the CartaBlanca software packages. We follow this
in Section 5 with some basic results. Finally, in Section 6 we
provide a discussion of conclusions and future plans.

2. FINITE VOLUME METHOD
CartaBlanca is based on the finite volume method, [7], for
conservation equations. More specifically, CartaBlanca adopts
the node-based version of this scheme with edge-based
connectivity, [18], [22]. We provide here a very simplified
outline of the method. For an arbitrary control volume V with

bounding surface A the generic conservation statement is of the
form

 0,
V A V

d
qdV f ndS sdV

dt
+ ⋅ + =∫ ∫ ∫

r rÑ (1)

where q is the density of some conserved quantity such as mass,

momentum or energy, f
r

is the local flux of this conserved
quantity due to a variety of mechanisms, n

r
is an outward normal

vector defined on the surface of the control volume, and s is a
generalized source density. The first and third integrals in
Equation (1) are over the entire space of the control volume; the
second integral is over the surface of the control volume. The
derivative on the first integral quantity in Equation (1) is with
respect to time. For numerical computations, Equation (1) is
discretized on a computational grid. On such a grid, conservation
nodes are connected by edges as shown in Figure 1.

Figure 1. Control volume for thi node.

Each node is associated with a polyhedral control volume, iV , as
depicted in Figure 1. For each node, the averaged value of the
conserved density is defined as

1

.
i

i
i V

q qdV
V

≡ ∫ (2)

The quantities iq are, typically, the state variables for the
numerical simulation. Similarly, the average source over each
control volume is

1

.
i

i
i V

s sdV
V

≡ ∫ (3)

Let ef

r
 be the average flux on the control volume face associated

with edge e . Then, if we integrate the Equation (1) over a time

step, t∆ , using, for example, a first-order difference
approximation for the time derivative, we obtain the discretized
form of the conservation equation

 1 1 0,
i

n n n n
i i i e e e i i

edges

q V q V t f n A sV+ +   − +∆ ⋅ + = 
  
∑

r r
 (4)

where the superscripts n and 1n + denote the present and future
time levels. Of course, the fluxes and source terms are generally

functions of space, time and the state variables, iq . Thus, the set
of discretized conservation equations for all nodes and all types of
conservation quantities forms a nonlinear algebraic system. The
physics for a given application lies in the definition of the fluxes
and sources in Equation (4). The aim of CartaBlanca is to
provide scientists and engineers a friendly environment using
object-oriented, component-based Java for the implementation of
physics and the solution of the resulting coupled nonlinear
conservation equations.

3. JACOBIAN-FREE NEWTON-KRYLOV

METHOD
We may write the set of conservation equations in the compact,
abstract form

 ()1 0n

iF q + = (5)

where iF denotes the left hand side of Equation (4) and 1nq +
denotes the entire set of state variables at the advanced time. The
quantity iF is called the residual function. The system
represented by Equation (5) is, in general, nonlinear. We employ
the Jacobian-Free Newton-Krylov method, [3], in CartaBlanca to
solve these systems. We provide here a brief outline in order to
motivate our discussion of the software design. Newton’s method
for a nonlinear system begins with an initial guess of the solution,

1(0)n
jq + , where the superscript in parenthesis denotes the iterate

level. This is, typically, the solution from time level n. Newton’s
method then proceeds through a series of iterations involving the
solution of a sequence of linear systems

 ()() ()()1 1 ,n k n kk
ij j iJ q F qδ+ += − (6)

along with the update

 () ()1 1 1 ,n k n k kq q δ+ + += + (7)

where there is an implied summation in Equation (6) on the
repeated index, j . The goal, of course, is to proceed until we
find the solution to Equation (5). The matrix quantity, ijJ , is the

Jacobian matrix defined as

 () ()
.i

ij
j

F q
J q

q
∂

=
∂

 (8)

Explicit formation of the Jacobian matrix is typically a very

expensive computation. Fortunately, the JFNK method takes
advantage of the fact that Krylov linear solution methods require
only the evaluation of matrix-vector products, Jv (where v is a
Krylov vector), and not the matrix J by itself, [3]. Furthermore,
matrix-vector products can be approximated numerically using a
directional difference formula,

() ()

,
F q v F q

Jv
ε

ε
+ −

≈ (9)

where ε is some small scalar perturbation parameter, [3]. This
approximation allows us to structure CartaBlanca in such a way
that the physics developer can focus on providing residual
functions inside physics objects or components. Using the
abstraction embodied in Equation (5) we have genericized the rest
of the infrastructure for solving and processing physics problems
so that developers can work simultaneously on a variety of
different problems using the same software.

4. SOFTWARE
CartaBlanca is composed, at present, of eleven separate packages.
Each of these packages contain classes that perform distinct
functions. We have tried to design these classes to serve, as much
as possible, as software components that can be interchanged in a
“plug and play” mode by developers. We have also tried to write
the utility classes in such a way that many developers need not
concern themselves with the parallel nature of the computation.

In the following we describe each of these packages and the
classes they contain. We also describe the interactions and
associations between the classes in the different packages. We
choose here to start the discussion with the mesh and input
packages. These are low-level packages in the sense that they are
used by many other packages and make sparing use of other
packages. We then work our way up through the remaining
packages of increasing complexity until we finally describe the
main package, which contains the main methods. Before
proceeding to the discussion of the CartaBlanca software
packages, we start by commenting on our general design
approach and on our software engineering methods.

4.1. Approach
Our approach to the design of CartaBlanca includes the following
general guiding principles. First, we have endeavored to make
use of object-orientation at the highest levels from a physical
point of view. Thus our objects are things like physical systems
that exist over the entire sections of the computational domain or
grid, rather than at the individual nodes. This choice was made
based on the idea that this would yield higher numerical
performance by avoiding excessive overhead at the node level and
would also represent a smoother transition into object-oriented
programming from the point of view of procedural scientific
legacy codes. Nevertheless, this approach has allowed us to make
substantial use of Java and its object-oriented features as will be
seen below.

Another principle we have employed is to make the top levels
of the program as generic as possible so that the developer can
plug physics into the appropriate program locations and then have
the rest of the program able to immediately interact. This was
accomplished, in part, by the use of abstract classes, which
provide virtual functionality and interfaces for things such as
physics and solver objects. This imposes a certain structure on
the derived classes that a developer provides.

4.2. Software Engineering
Because of the significant research content of our project, our
approach to team programming follows the lightweight processes
advocated in the recent article by Fowler, [8]. Iterative
programming and component development has, for example, been
very useful. The use of team coding has also proved helpful.

In order to foster the team software approach, we have
incorporated the JUnit, [12], testing facility into CartaBlanca.
This has been useful in that any developer can perform tests
easily on their local computing platform to make sure his
modifications have not corrupted the software. This is in contrast
to a situation in which software testing is performed using
specialized software available only on a certain computing
platform.

We have found it very helpful to use a common integrated
development environment (IDE) for our software development.
We are currently using JBuilder 4.0 Professional by Borland
Technologies. JBuilder gives us an identical programming
environment on our Windows NT and Solaris workstations.
JBuilder is also available for LINUX operating systems. The
JBuilder environment, conveniently, recognizes the JavaDoc
@todo functionality. We use this feature as a simple issues
tracking mechanism.

In addition to the JBuilder IDE, we use the GNU CVS revision
control software for our software repository. We run CVS as a
‘pserver’ on one of our Solaris workstations. Thus we can
directly check in and out pieces of software over the network
directly. We currently run a simple implicit heat transfer and
scalar advection problems (discussed in Section 5) as test
problems before committing software modifications to our CVS
repository.

Finally, our software design approach for this project began
with graphical design using a Unified Modeling Language design
tool called GDPro by Advanced Software Technologies. We
found it helpful to use the UML class hierarchy diagrams to map
out our ideas on software structure. Once we had a graphical
design, we were able to generate stubs for our classes
automatically using GDPro’s forward engineering feature.

4.3. File IO Package
The lowest level package used in CartaBlanca was imported for
basic file input and output (IO) from S. J. Chapman, [4]. This
package contains classes with methods that enable the developer
to write C-language-syntax file print and read statements. These
methods are used in the mesh package classes for reading text-
based mesh files (see Section 4.6) and in the graphics package
classes for writing text-based graphics files (see Section 4.10).

4.4. Input Package
The input package contains the basic input facilities for problem
specification. The user specifies parameters such as solver
tolerances, physical properties and boundary conditions using a
graphical user interface (GUI). Problem data is written to a
‘ProblemSpecifier’ class object. The ‘ProblemSpecifier’ object is
a simple Java Bean, [6], that contains all problem specifications
from the GUI and can be queried by other objects as needed.
This class of objects is serializable. This feature is used to save
ProblemSpecifier settings to disk. This eliminates the need for
any text-based input files, other than the mesh files (see section
4.6).

The GUI is contained in three classes named
‘TabbedInputClass’, ‘TabbedInputFrame’ and
‘TabbedInputFrame_AboutBox.’ The GUI covers several
categories of input separated into several tabbed input frames.
The input categories are General Information, Physics, Linear
Solver, Non-Linear Solver, Pre-conditioner, Initial Conditions,

Boundary Conditions and Materials. A snapshot of the GUI
interface is shown in Figure 2.

Figure 2. Snapshot of GUI. Tabs enable user to provide input
on the various categories of input.

The user can click on the various tabs along the top of the GUI
to access the different categories of input. As the user types in
new information into the fields of the GUI, the information is
written to the ProblemSpecifier object. When the user exits the
GUI, the ProblemSpecifier is output to disk as a serialized object
for future use and the rest of the program then begins executing
based on the information in the ProblemSpecifier object.

4.5. Communications Package
The communications package contains classes of objects that
provide functionality for inter-partition communication and for
global mesh operations. The class CyclicBarrier provides a
simple barrier that objects may invoke to synchronize
calculations. The implementation was modeled on the barrier
class provided in Chapter 5 of Oaks and Wong, [16]. The
CyclicBarrier is used, for example, in discrete operations such as
divergence field computations in which communication of flux
quantities among mesh partitions are required.

The Reduction class in the communications package provides
for the computation of global quantities across the entire mesh
such as a global maximum or a global sum. Global sums are
required, for example, for mesh-wide dot products of vectors in
the various Krylov solvers. The Reduction class accomplishes
this by using static class variables for sums and extrema.

4.6. Mesh Package
The mesh package contains several classes that describe mesh
elements, edges, interior boundary nodes, and partition and global
meshes. Let us discuss these classes in the order in which they
come into existence as the program reads in mesh information
from mesh files. To begin, let us describe the three types of mesh
information files that CartaBlanca requires. The mesh file format
follows from those required by the Metis mesh-partitioning
program, [13]. The three files contain the mesh connectivity, the

node coordinates and the partitioning of the mesh elements.
Please see the Metis manual, [13], for a description of these files.

CartaBlanca requires mesh partitioning to be done in such a

way that elements and not nodes are partitioned. Referring to
Figure 3, the mesh partitioning for CartaBlanca must be done
along node-edge connections. In the Figure, the heavier edge
connections denote the boundary between partition A and
partition B. To implement this mode of partitioning in
CartaBlanca, nodes on the partition boundaries are duplicated. In
the example in the Figure, the three nodes along the partition
boundary would be present in each partition as duplicates.

Figure 3. Partitioning in CartaBlanca. Meshes must be
partitioned along node connections.

To illustrate further how mesh partitioning works in
CartaBlanca, a two-dimensional mesh is shown in Figure 4

Figure 4. Two-dimensional partitioned mesh.

The mesh partitioning shown in Figure 4 was performed using
the Metis program and the Metis output was then fed to
CartaBlanca for computations. The actual plot was generated
using the Tecplot program which operates on graphics output
files from CartaBlanca (see Section 4.10) A further example mesh
is shown in Figure 5 for the case of a 3-dimensional tetrahedral
mesh.

Figure 5. Three-dimensional tetrahedral element mesh. The
shading denotes the 4 partitions that were computed by Metis.

In general terms, the mesh package classes perform the
following functions:

• Read and store data from mesh input files. This includes

element connectivity, node coordinates and element
partitioning,

• Compute all required element and node geometrical
information such as cell face areas and normal vectors for
the global mesh,

• Compute all edge connectivity and geometric information
from the element information for the global mesh,

• Link all nodes via edge elements,
• Setup up partition meshes with links between global and

partition mesh objects including nodes, elements and edges.
• Set up connectivity between duplicate nodes on different

partitions.

4.7. Discrete Operations Package
The discrete operations package contains a class called
Divergence which provides a variety of mesh-wide discrete
operations including the computation of the divergence of a
vector field, the gradient of a scalar at both mesh nodes and mesh
faces as well as some more specialized operations. Some of the
specialized operations include finding the maximum face-by-face
inflow values for each node for advection calculations and finding
the diagonal term of a mesh-wide matrix operator. All of these
operations require communication and therefore use the duplicate
node connectivity information from the mesh package classes and
the barrier object from the communications package.

4.8. Physics Package
The physics package contains classes that allow a developer to
input and specify the conservation equations that he or she would
like to solve. The developer first must set up an AbsState class
corresponding to his physical system. This is a container class
that is discussed below in section 4.8.1. Once the AbsSstate class
is set up, the user then can specify his conservation equations in
an AbsProblemPhysics class. This is discussed in section 4.8.2.

When specifying both the AbsState class and the
AbsProblemPhysics class, the user must extend abstract classes
that provide the basic format that is expected by the rest of
CartaBlanca.

4.8.1. AbsState Class
The AbsState class is an abstract class that must be extended by
the developer to provide a data container for state variables for
specific physics problems. The state variables are fundamentally
stored in a two dimensional array wherein the first dimension is
the variable type and the second dimension is the node index. So,
for example, if one is trying to solve a problem with state
variables for pressure, and three components of velocity, then the
first dimension of this array would be four. The two-dimensional
representation is convenient for developers since they tend to
work with the governing equations a field or state variable type at
a time. The two-dimensional view is also a convenient format for
the graphics package since it also processes the data a field at a
time.

Krylov solvers, however, work in terms of a one-dimensional
state vector. Thus, the AbsState class also provides a one-
dimensional view of the same state data. Currently, the one-
dimensional view is provided as a copy of the two dimensional
data. The copy is performed using Java’s System.arraycopy
function for best performance. When and if Java provides a true
two-dimensional array, [11], this copy may be avoided altogether.

4.8.2. AbsProblemPhysics Class
For linear physical systems, developers can specify their physical
system behavior by extending the AbsProblemPhysics class.
AbsProblemPhysics is an abstract class that lays out what
CartaBlanca expects from physics objects. The most important
feature of this class of objects is the methods to get the right and
left hand side of the governing equations for the state variables.
The solvers in CartaBlanca interact with these physics object
methods to obtain the right-hand side of the linear equation
system and the matrix-vector multiply. Another important
behavior of AbsProblemPhysics objects is the pre-conditioning
method. The Krylov solvers also interact with physics objects by
invoking their pre-conditioning method. This method takes a
Krylov vector from the Krylov solver and updates it according to
some iterative improvement scheme. Currently, a Jacobi iteration
scheme is used. Plans for a multigrid scheme are in place to
obtain improved solver performance.

AbsProblemPhysics classes also inherit some methods for the
base classes for converting time n states to time 1n + states.
These methods can, of course, be overridden in the derived
classes to provide additional functionality.

4.8.3. NLAbsProblemPhysics Class
In the case of nonlinear physics problems, the matrix-vector
multiply evaluation has to be provided in a generic fashion
following Equation (9). The NLAbsProblemPhysics class of
CartaBlanca extends the AbsProblemPhysics to provide this
behavior. In this class of objects, the developer must encode the
governing equations into methods that return the full nonlinear
residual equation in the form of a left and right hand side. The
left and right hand side correspond to the implicit and explicit
parts of the governing equations. These objects invoke these
nonlinear get methods from the overridden linear get methods

from AbsProblemPhysics class using Equation (9) to produce a
linear matrix-vector multiply evaluation. Since
NLAbsProblemPhysics inherits from AbsProblemPhysics, all
other behavior, such as pre-conditioning is available.

Figure 6 provides a graphical overview of the physics class
inheritance hierarchy that was generated directly from the Java
source code using GDPro.

AbsProblemPhysicsAbsState

NLHeatTransfer

HeatTransferP

HtStateICState

IncompressibleFlow NLAbsProblemPhysicsScalarAdvection

Figure 6. UML Class hierarchy diagram of the Physics
package. Note that NLHeatTransfer inherits from
NLAbsProblemPhysics which inherits from
AbsProblemPhysics.

4.9. Solver Package
The solver package contains classes for linear and nonlinear
solvers. As for the classes in the physics package, an abstract
solver class, AbsSolver, is provided as a parent for all solvers.
Currently, this class has been extended to provide users a
Conjugate Gradient and Gmres Krylov solver class. In addition,
an ‘explicit’ solver is provided for fully explicit calculations
which essentially bypasses any solution method at all and simply
returns the right hand side as the solution. Finally, a Newton-
Gmres (JFNK) solver is provided for nonlinear problems. Each
of these solvers communicates directly with physics objects
through method invocations. The solver class inheritance
hierarchy is shown in Figure 7.

Figure 7. Solver package class hierarchy.

Included in the figure is a class diagram for Fgmres, or Flexible
Gmres that allows for increased pre-conditioning options. This
will be added at a later date to allow for increased solver method
prototyping options.

4.10. Graphics Package
The Graphics package, at present, contains only one class that

can be used to produce Tecplot output files. The class interacts
with the abstract state class so that it automatically knows about
new state variables, etc. As mentioned in Section 4.3, the
graphics class currently uses the Chapman IO facility to produce a
text-based file. Eventually, this class will be extended to allow
for additional plot file output formats. We also envision direct
use of Java graphics.

4.11. Problem Driver Package
The ProblemDriver package contains the Driver class, a top-level
driver for solving physics problems on each mesh partition. The
Driver class implements Java’s Thread-class Runnable interface.
This enables data-parallel computation in CartaBlanca with each
thread corresponding to a particular mesh partition. Figure 8
shows a UML association diagram for the Driver class.

Driver

CyclicBarrier
{Imported}

Divergence
{Imported}

ProblemSpecifier
{Imported}

MeshDriver
{Imported}

AbsProblemPhysics
{Imported}

AbsSolver
{Imported}

Runnable
{Imported}

Figure 8. Association diagram for driver class.

As can be seen, the Driver class interacts with all the major
CartaBlanca objects from an AbsProblemPhysics object to an
AbsSolver object.

4.12. Main Package
The main package consists of several classes that contain the
public static main method that drives the entire simulation. The
class PhysMain contains a main method that instantiates all high-
level objects and invokes the start method for all of the Driver
objects for each mesh partition.

Figure 9. Flow chart for CartaBlanca main method.

5. RESULTS
Here we provide information on compilation, run-time
performance and three preliminary simulation results from
CartaBlanca. This work was performed using an SGI 320 Dual
Processor workstation with 500 MHz Pentium III processors and
the Windows NT operating system. All of the physics
simulations were performed using two threads for two-processor
data parallel computations.

5.1. Compilation
The entire software package compiles to byte code using JBuilder
4.0 with the Java 1.3 JDK in a matter of a few seconds. In
addition, we have begun to use the optimizing compiler called
JOVE (version 2.0) by Instantiations, Inc to produce native code
executables of CartaBlanca. Without the GUI, the code compiles
from byte code to native code executable in a matter of 3 to 4
minutes. With our GUI, the compilation takes about an hour,
however.

5.2. Scalar Advection
The first two examples are of explicit scalar advection
calculations done on the triangular element grid shown in Figure
4. The results of the calculations are shown in Figure 10 and
Figure 11. These calculations were performed using 2 threads in
parallel on the two-processor workstation. Each thread operated
on a separate mesh partition.

Figure 10. Results from a continuum scalar advection
simulation on a two-dimensional triangular mesh.

Figure 11. Results from a interface-tracking scalar advection
simulation on a two-dimensional triangular mesh.

Each calculation started with a pulse of concentration in the lower
left hand corner of the domain. In the first example, the
concentration pulse has a Gaussian spatial distribution while in
the second example; the pulse was a spatial step function with
circular shape. This material was advected towards the top right
according to the conservation equation

 0i

i

c cu
t x

∂ ∂
+ =

∂ ∂
 (10)

where c is concentration, iu is the thi component of velocity, t

is time and ix is the thi spatial coordinate. There is an implied
summation over the repeated index in the second term. In these
example calculations, the velocity was a constant with component
values of one in the horizontal and vertical directions. The final
conditions of the concentration pulses are shown in the top-right
of Figure 10 and Figure 11. Note that in the case of Figure 10 we
used the continuum advection version of CartaBlanca’s advection
facility while in Figure 11 we used the interface-tracking version
of the advection facility.

The calculations used Cartablanca’s explicit solver to advance
the solution of Equation (10) over 120 time cycles. Although
Equation (10) is relatively simple, it is commonly known that it is
difficult to obtain accurate numerical solutions for this equation
that minimize the artificial numerical smearing of such
concentration pulses and also avoid the creation of artificial
extrema, especially on triangular grid meshes. Also, doing such
calculations using interface tracking is also a very difficult task.
These examples demonstrate that CartaBlanca has advanced
advection algorithms that can be used by developers for a wide
variety of applications.

5.3. Implicit Heat Transfer
The second example is a simple implicit heat transfer calculation
performed on the same mesh. CartaBlanca’s Gmres solver was
used to compute the temperature field as a function of time over 5
time cycles according to the equation

i i

T T
t x x

α
 ∂ ∂ ∂

=  
∂ ∂ ∂ 

 (11)

where T is temperature and α is the thermal diffusivity, which
was set to one for the example problem. Zero-gradient boundary
conditions were used which correspond physically to a perfectly
insulated box. The final state is, therefore, a uniform temperature
of one-half. CartaBlanca found this solution, as expected, using
both a single mesh partition and with the 2 mesh partitions on the
SGI 2-processor workstation mentioned above. The observed
speed-up going from one to two processors was a factor of about
1.5. While this is not perfect scaling, our experience from other
parallel codes has been that good scaling is observed only with
more than 4 processors. More work is required to completely
understand the scaling characteristics of CartaBlanca.

5.4. Performance
While we are still in the infrastructure-building phase of this
project and have not yet been able to spend time optimizing code,
we can provide some preliminary indications of performance. In
order to compare with C++, for example, we have timed the
computation of the divergence of a vector field on an unstructured
mesh using both CartaBlanca and a C++ version of the same
algorithm. (with edge-based indirect addressing). The C++
version of the algorithm was from the Kokopelli code mentioned
in Section 1.3, which was compiled with optimization. We found

that the byte-code-interpreted Java run time was about the same
as the C++ run time. While we expected some performance
increase with the native-code compiled version of CartaBlanca
using the JOVE product, we, unfortunately, saw speed-ups of
only a few percent. We need to spend more time to fully
understand these preliminary results.

6. CONCLUSIONS AND FUTURE PLANS
Since we are still very much in the development phase of this
project, it is too early to provide definitive assessments of the
design and performance of CartaBlanca. In a qualitative sense,
we can say that CartaBlanca has already been a useful tool for
algorithm development since we have been able to do the research
on our new advection scheme exclusively within CartaBlanca.
That is, CartaBlanca has provided us with sufficient usability and
performance that we did not choose to go “off-line” to some other
program or development tool to do one of our main jobs,
algorithm research and development. So in this sense, we can
already claim some “bottom-line” success.

In the future, we plan to pursue a number of promising leads in
the near future. The following is a partial list covering some of
the major possible directions:

• Implement a fully coupled multiphase flow capability for

weapons-complex and other applications. This would put us
in a position to examine a number of important flow
simulation problem classes including single-phase flow,
interfacial flows and potentially, fluid-structure interactions.

• Implement and investigate operator-split pre-conditioning
strategies for complex coupled systems. This should provide
significant speed-up to our Jacobian-Free Newton-Krylov
solver facility. Once this is fully in place, we should be able
to better assess how well CartaBlanca and Java could serve
as a serious production simulation tool.

• Implement a moving and adaptive mesh capability. This
capability would further the utility of CartaBlanca and may
be particularly important for fluid-structure interaction
simulation problems. Furthermore, it would test how well
we have encapsulation the present meshDriver object when
we replace it with one that can perform mesh motion.

• Fully investigate the use of Java native-code compilers.
• Extend CartaBlanca to distributed memory architecture for

cluster-based computing. We are considering the use of
JavaParty, [19], as a means to extend CartaBlanca to
distributed memory systems.

7. ACKNOWLEDGMENTS
We gratefully acknowledge the support for this work from the
Department of Energy and the Los Alamos Computer Science
Institute (LACSI). We thank Dana Knoll, Doug Kothe and
Manjit Sahota for their very useful comments and suggestions.
We also thank John Thorp, Joel Dendy and Stephen Lee for their
programmatic advocacy on our behalf.

8. REFERENCES
[1] F. L. Addessio, J. R. Baumgardner, J. K. Dukowicz, N. L.

Johnson, B. A. Kashiwa, R. M. Rauenzahn, C. Zemach,
CAVEAT: A Computer Code for Fluid Dynamics Problems
with Large Distortion and Internal Slip, Los Alamos
National Laboratory Report LA-10613-MS, Rev. 1, May,
1992.

[2] R. M. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der
Vorst, Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition, SIAM,
Philadelphia, 1994.

[3] P. N. Brown and Y. Saad, Hybrid Krylov Methods for
nonlinear systems of equations, SIAM J. Sci. Stat. Comput.,
11(3):450-81, 1990.

[4] S. J. Chapman, Java for Engineers and Scientists, Prentice
Hall, Upper Saddle River, NJ, 2000.

[5] R. M. Eckstein, M. Loy and D. Wood, Java Swing, O’Reilly,
Cambridge, 1998.

[6] R. Englander, Java Beans, O’Reilly, Cambridge, 1997.
[7] J. H. Ferziger and M. Peric, Computational Methods for

Fluid Dynamics, Springer, New York, 1999.
[8] M. Fowler, Put Your Process on a Diet, Software

Development Magazine, 2(12), December 2000.
[9] M. Hatakeyama, M. Watanabe and T. Suzuki, Object-

Oriented Fluid Flow Simulation System, Computers &
Fluids, 27(5):581-597, 1998.

[10] J. Hauser, T. Ludewig, T. Gollnick, R. Winkelman, R.
Williams, J. Muylaert and M. Spel, A Pure Java Parallel
Flow Solver, AIAA paper 99-0549.

[11] Java Grande Forum Panel, Java Grande Forum Report:
Making Java Work for High End Computing, SC 1998,
Orlando, Florida, 1998.

[12] JUnit, http://www.JUnit.org/.
[13] G. Karypis, and V. Kumar, METIS A Software Package for

Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices,
Version 4.0, University of Minnesota, Department of
Computer Science / Army HPC Research Center,
Minneapolis, MN (http://www-
users.cs.umn.edu/~karypis/metis/index.html)

[14] B. Kashiwa, N. T. Padial, R. M. Rauenzahn and W. B.
VanderHeyden, A Cell-Centered ICE Method for
Multiphase Flow Simulations, FED-Vol. 185, Numerical
Methods in Multiphase Flows, ASME, 185:159-176, 1994.

[15] C. T. Kelly, Iterative Methods for Linear and Nonlinear
Equations, SIAM, Philadelphia, 1995.

[16] S. Oaks, and H. Wong, Java Threads, O’Reilly, Cambridge,
1999.

[17] J. V.W. Reynders III and J. Cummings, The POOMA
Framework, Computers in Physics, 12(5):453-459, 1998.

[18] P. J. O’Rourke, and M. S. Sahota, CHAD: A Parallel, 3-D.
Implicit, Unstructured-Grid, Multimateria, Hydrodynamics
Code for All Flow Speeds, Los Alamos National Laboratory
Report LA-UR-98-5663, October, 1998.

[19] M. Philippsen, and M. Zenger, JavaParty: transparent remote
objects in Java, Concurrency-Practice and Experience,
9:1225-1242, November 1997.

[20] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS
Publishing, San Fransisco, 1995.

[21] J. Schatzman and R. Donehower, High-Performance Java
Software Development, Java Report, 6(2):24-41, 2001.

[22] V. Selmin, The Node-Centered Finite Volume Approach:
Bridge between Finite Differences and Finite Elements,
Comput. Methods in Appl. Mech. Engrg., 102(1):107-138,
January, 1993.

[23] Telluride, http://public.lanl.gov/mww/HomePage.html, Los
Alamos National Laboratory Report LA-UR-99-1664, 1999.

